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ABSTRACT 

In this paper, wNAF expansion method is used to compute a scalar multiplication on 

classes of elliptic curve over a prime field that have efficiently-computable 

endomorphisms. This scalar multiplication is called integer sub-decomposition (ISD) 

method, which is based on the GLV method of Gallant, Lambert and Vanstone that 

was initially proposed in the year 2001. In this work the ISD implementation uses 

speed parallel computation of endomorphisms ψi for i = 1,2 to compute the multiple kP 

of a point P of order n lying on an elliptic curve. The decomposition of a scalar k 

according to GLV method produces two integers k1 and k2 lie inside the range of ±√n. 

This decomposition also gives significant number of integers k1 and k2 lie outside the 

given range of  ±√n. These outliers are not considered in the GLV method. Therefore, 

the ISD approach is proposed to bridge the gap and to complement the GLV method.  

Besides that, the ISD method helps increase the percentage of successful computation 

of kP. In this paper, the main idea is to present the parallel computation of ISD elliptic 

scalar multiplication which is defined by the following decompositions. 

 

kP= k11P+ k12ψ1(P)+ k21P+ k22ψ2(P), with |k11|, |k12|, k21|, |k22| < √n. 

 

This computation employs two models using the interleaving methods based on 

parallel computation of the generalized wj-NAF expansions for j=1,2,3,4. It is known 

that the parallel processing on two proposed interleaving methods produce more 

computation speed in comparison with the computations that were performed 

individually. 
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1. INTRODUCTION 

Elliptic curve cryptography was proposed by Miller, 1986 and Neil 

Koblitz, 1987 in the year 1985, and it has attracted increasing attention in 

these recent years because of their shorter key length requirement when 

compared to other public-key cryptosystems like RSA. Elliptic curve 

cryptography (ECC) is derived from the hardness of the discrete logarithm 

problem over the additive group of points on an elliptic curve defined on 

finite fields. Among the benefits of ECC are shorter key length, higher speed 

and lower power consumption. These advantages are useful for some devices 

like mobile and wireless which, typically, have limited computational 

resources and bandwidth.  

        

Scalar multiplication, in general, represented by kP  is considered as 

the central time-consuming operation in ECC. In order to compute this 

operation, it is necessary to perform iterative addition (ECADD) and doubling 

(ECDBL) of points, which we referred to as ECC point operations, and their 

efficient performance is essential to speed up the computation of scalar 

multiplication Hao, et al., 2008. 

 

Elliptic curves have a well-known facts and distinct theoretical 

aspects for the algebraic structures and also the endomorphism applications 

which can be applied to improve performance fast in elliptic curve scalar 

multiplication. The extension idea of using Frobenius endomorphism 

( )End E   on elliptic curves of arbitrary characteristic 3p   splits a large 

computation into a sequence of cheaper ones so that the overall 

computational cost is lowered Hankerson et al., 2004. Such a technique, 

which contrary to previous ones, also applied to curves defined over large 

prime fields, was used, recently, by Gallant et al., 2001. Their method uses an 

efficiently computable endomorphism ( )End E   to rewrite kP as 
 

1 2
( ),kP k P k P   with    1 2

max , .k k O n  

 

In Gallant, Lambert and Vanstone (GLV) method, the value k is 

decomposed into the values 1k  and 2k  with the condition that both values are 

bounded by .n  There are some failing points in GLV method, among 

them, the main weakness point is, it does not determine the case when the 
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values of  1k  and 2k  are not within the range  .n  So, the GLV method 

will not work with this case.  As result, we have proposed new method is 

called Integer Sub-Decomposition (ISD) (Ajeena and Kamarulhaili, 2013; 

Ajeena and Kamarulhaili, 2014a; 2014b) to increase the percentage of a 

successful computation of .kP  The basic idea of ISD method is the sub-

decomposition of the values 1k  and 2k  into the values 11 12 21, ,k k k  and 22 .k  

The sub-decomposition from  
  
 

                    1 2 (mod )k k k n            (1) 

 

is elucidated as the following: 

 

1 11 12 1 (mod )k k k n   and
 2 21 22 2 (mod ).k k k n          (2) 

 

The meaningful role of the method lies in the definition of the group 

homomorphism (the ISD reduction map) 

 

: /T Z Z Z n   

( , ) (mod ), 1,2.
m

i j i j n m                                          (3) 

 

In particular, we compute the sub-decomposition as follows: 

 

  

11 12 1 21 22 2

11 12 1 21 22 2

11 12 1 21 22 2

( ) ( )

( ) ( ).

kP k P k P k P k P

k P k P k P k P

k P k P k P k P

 

 

 

   

   

   

                              (4) 

 

The computation of kP that is defined in equation (4) can be carried 

out through two proposed methods which uses the computation of the 

interleaving based on the generalized wj-NAF expansions in parallel. 

Computing interleavings on the first proposed method is performed in two 

parallel lines (threads) . The sum of two outputs which form as two elliptic 

curve points gives the final result of the ISD elliptic scalar multiplication kP. 

Whereas, the computation with the second proposed method is done in one 

parallel line (thread) to find the final result of kP directly. 
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2. MATHEMATICAL PRELIMINARIES 

In this section, some mathematical basics such as definitions, group laws of 

points on elliptic curves and related known results are shown to give more 

insight of our work.  

 

2.1.  Elliptic Curve over Prime Field 

Definition 1. (Hankerson et al., 2004 and Washington, 2008). An elliptic 

curve E over a field K is defined by an equation  

 
2 3 2

1 3 2 4 6:E y a xy a y x a x a x a                      (5) 

 

where 1 2 3 4 6, , , ,a a a a a K  and 0,ED    where ED  is the discriminant of .E  

 

Definition 2. (Hankerson et al., 2004). A Weierstrass equation defined over 

K in equation (5) can be simplified considerably by applying admissible 

changes of variables. If Char(K) ≠ 2 or 3, then the admissible change of 

variables is  
32

1 1 2 31 2 1
12

,
43 12 3

( , ) ,
36 216 24

aa a ax a a y a x
x y

   
  
 
 

 

 

transforms  E to the curve  

 

                                      2 3: ,E y x ax b                         (6) 

 

where , .a b K  The discriminant of this curve is 
3 216(4 27 ).ED a b    If 

the elliptic curve E   defined over prime field ,pF  then equation (6) is 

expressed as 
2 3: (mod ),E y x ax b p                     (7) 

 

where , .pa b F  The curve E   is said to be non-singular if it has no double 

zeroes, which means the discriminant 
3 216(4 27 ) 0(mod ).ED a b p      

 

Definition 3. (Hankerson et al., 2004 and Washington, 2008). Let an elliptic 

curve be defined as 
2 3: (mod )E y x ax b p    over the finite field with 

Char(K) ≠ 2,3. Then, the following arithmetic properties of E should be 

considered: 



Integer Sub-Decomposition Elliptic Scalar Multiplication 

 

 Malaysian Journal of Mathematical Sciences 119 

 

1. Identity. P P P   for all ( ).P E K   

2. Negatives. If ( , ) ( ),P x y E K   then ( , ) ( , ) .x y x y    The point 

( , )x y  is denoted by P   and is called the negative of  ,P  note that 

P  is indeed a point  in ( ).E K  Also, .    

3. Point addition. Let  1 1( , ) ( ),P x y E K   and 2 2( , ) ( ),Q x y E K   where 

.P Q   Then 3 3( , ),P Q x y   where 

      

3.1. If  1 2 ,x x  then 
 

              

2

2 1
3 1 2

2 1

y y
x x x

x x

 
   

   
and  

2 1
3 1 3 1

2 1

( ) .
y y

y x x y
x x

 
   

 
 

 

3.2.  If 1 2x x  but 1 2 ,y y  then  .P Q   

 

4.  Point doubling. Let 1 1( , ) ( ),P x y E K   where 

 

4.1. If  P Q  and 1 0.y  Then 3 32 ( , ),P x y  where 

 
2

2

1

3 1

1

3
2

2

x a
x x

y


 
 
 
 

 

and 

             

2

1

3 1 3 1

1

3
( ) .

2

x a
y x x y

y


  
 
 
   

 

4.2.  If P Q  and 1 0,y   then .P Q   

  

Definition 4. (Gallant et al., 2001; and Hankerson et al., 2004). Assume that 

E is an elliptic curve defined over the finite field .pF  The point at infinity is 

denoted by .EO  The set of pF  - rational points on  E forms the group ( ).pE F  

A rational map : E E   satisfies : ,E EO O  which is called an 
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endomorphism of  E . The endomorphism   is defined over ,qF  where 

nq p  if the rational map is defined over .qF  Thus, for any 1,n   is a 

group homomorphism of  ( )pE F  and ( ).qE F  

 

Definition 5. (Hankerson et al., 2004). The endomorphism of elliptic curve E 

defined over qF  is the m- multiplication map [ ]:m E E  defined by   

 

                 P mP      (8) 

 

for each .m Z  The negation map [ 1]: E E   defined by P P  is a 

special case from m- multiplication map. 

 

Lemma 6.  Let E be an elliptic curve over prime field pF and let P  be a point 

lies on E has large prime order n. Assume that ( )P  is a non trivial 

endomorphism of  E. Then ( ) ,P P   where   is a root of its characteristic 

polynomial.  

 

Definition 7.  (Kim and Lim, 2003). ISD generators are two sets 3 4{ , }v v  and 

5 6{ , }v v  of the linearly independent vectors 3 4,v v  and 5 6,v v  in the kernel of 

the homomorphism  

  

                    :T Z Z Z n   defined by ( , ) ( )(mod ),mi j i j n            (9) 

 

where m=1,2. It is called ISD generators if each component of 3 4,v v and 

5 6,v v  are bounded by √n. 

 

Definition 8. (Karypis et al., 1994; Jones, 1999; Barney et al., 2010).  

Parallel computing is a mode of computation which carries out many of 

repeated calculations simultaneously, or it is operating on the basic dividing 

the large problems into smaller ones to solve them in parallel. On the other 

words, parallel computing is the employ of two or more processors in 

combination to solve computational problem such that this problem can be 

broken into discrete portions, and can be solved concurrently. 

 

3. WINDOW METHODS 

With some extra memory, the implementation to represent the scalar 

k can be done using the window method. The method takes an input of w 
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digits of  k at the same time. Therefore, the executing time to represent  k  can 

be decreased. 

 

Definition 9.  (Hankerson et al., 2004).  Suppose 2w   is a positive integer. 

A width-w NAF of a positive integer k is an expression  
1

0

2
l

i

i

i

z G




                 (10) 

                                                           

where each nonzero coefficient iG  is odd, 12 ,w

iG    1 0,lG    and at most 

one of any w  consecutive digits is nonzero. The length of the width-w NAF 

is .l   

 

Theorem 10. (Properties of width-w NAFs). (Hankerson et al., 2004) 

Let k be a positive integer, then 

(i)   k  has a unique width-w NAF denoted ( ).wNAF k   

(ii)  2 ( ) ( ).NAF k NAF k   

(iii) The length of ( )wNAF k  is at most one more than the length of the   

binary representation of  .k  

(iv) The average density of nonzero digits among all width-w NAFs of 

length l is approximately 1 ( 1).w    

     

3.1. Interleaving Method 

To increase efficiency, one needs to speed up the computation of kP lQ  

that was used in some parts of elliptic curve cryptosystems such as in digital 

signature scheme. This acceleration can be achieved through using a 

simultaneous multiple point multiplication that is also named Shamir trick. 

The simultaneous method depends on combinations of the points 

, , 0,1,2,3, ,iP jQ i j  that was pre-computed in the pre-computation stage. 

When the pre-computed value has only a single point like jiP  then the 

simultaneous method is called interleaving. 

 

The interleaving, in computation 
j jz P  for points jP  and  integers 

, 1,2,jz j   permits to apply various methods for each  j j
z P  such that the 

doubling step can be carried out simultaneously.  For instance, using width 

wNAF method with different width values w. The computational cost of 

doubling can be determined through the determination of the maximum 
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number of required doublings for each computing .j jz P  The interleaving 

method to compute 

1,2 j jj
z P

     (11) 

 

is given by algorithm (3.51) of  Hankerson et al., 2004. The representation of 

integers jz  that written in equation (11) can be done by using jw NAF 

expansions that is illustrated in algorithm (3.35) of Hankerson et al., 2004.  In 

algorithm (3.51), computing the points jiP  for odd  
1

2 jw
i


  was performed 

in precomputation stage. The processing through expansions  NAF ( )j jw z can 

be carried out simultaneously from left to right with a single doubling of the 

accumulator at each phase Hankerson et al., 2004. 
 

4. PARALLEL COMPUTATION OF Wj-NAF EXPANSIONS 

AND EFFICIENTLY COMPUTABLE ENDOMORPHISMS 

In this section, parallel computation of wj-NAF expansion and 

efficiently computable endomorphisms are discussed. Algorithms for both 

models are shown and proposed here. 

 

4.1. Proposed Model of The Parallel Computation of wNAF 

Expansions in Two Parallel Lines 

In this work, it is possible to generalize the computation of wNAF expansion 

that was introduced in Definition (9) and Theorem (10) and enhanced the 

implementations by Algorithm (3.51) in Hankerson et al., 2004. The 

generalization produces through finding the representation of wj-NAF 

expansions for four integers simultaneously through the parallel computation 

which consists of two parallel lines. Each parallel line works through two 

parallel sub-lines. First parallel sub-line takes 1 1( , )z w  as an input to compute  

w1NAF(k11) expansion, second parallel sub-line takes input 2 2( , )z w  to output 

w2NAF(k12 ) expansion. Whereas, on the second parallel line, the first parallel 

sub-line takes 3 3( , )z w  as an input to obtain w3 NAF(k21) expansion and 

second parallel sub-line takes input 4 4( , )z w  and resulted in w4 NAF(k22) 

expansion. 

 

In the context of the Definition (9) that presented to explain wNAF 

expansion, it can be generalized for parallel computation concept to represent 

more than one of integers and compute the wj-NAF expansions of them as 

follows: 
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Definition 11.  Let 2, 1,2,3,4jw j   be positive integers. The width wj 

NAFs  of positive integers 
jz  are expansions 

1

,

0

2 ,
jl

i

j i j

i

z G





  with 1,2,3,4.j                                  (12) 

 

such that each nonzero coefficient ,i jG   is odd and satisfies 
1

, 2 .jw

i jG


  The 

leftmost significant bit 1, 0.
jl jG    For each expansion, any jw  consecutive 

bits, at most one of them is nonzero. The length of each jw NAF expansion is 

jl  for 1,2,3,4.j   The implementation of algorithm (1) gives results of the 

generalized 
jw NAF expansions in two parallel lines. Figure (1) depicts the 

parallel computation of  wj-NAF expansions on two parallel lines. 

 

4.2. Parallel Computation of the Width- wj-NAFs of Four Positive 

Integers in Two Parallel Lines 

The following algorithm 1 is the algorithm for parallel computation of width-

wNAFs with four positive integers in two parallel lines. 

 

Algorithm 1: 

Input: Window width ,jw positive integer 
j

z ,  j=1,2,3,4.  

Output: The 
j NAFw  expansions of  positive integers , 1,2,3,4.jz j   

Computation: 

1.  0i   

2.  First parallel Line: 

3. While ( 1, 1,2)jz j   do 

4.     If ( jz is odd ) then  

5.     , ,mod 2 ,jw

i j j j j i jG z z z G     

6.     Else , 0i jG   

8.     Endif 

9. 2, 1.j jz z i i     

10.  Endwhile 

11.  Second parallel Line: 

12.  While ( 1, 3,4)jz j   do  
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13.   If ( jz is odd ) then  

14.   , mod 2 ,w

i j jG z  ,j j i jz z G    

15.   Else 

16. , 0i jG   

 17.  Endif 

18. 2, 1.j jz z i i     

19.  Endwhile 

20.  Return: From first parallel line: 

       1,1 2,1 1,1 0,1{ , , , , }i iG G G G   and 1,2 2,2 1,2 0,2{ , , , , }i iG G G G   

21.  From second parallel line: 

       1,3 2,3 1,3 0,3{ , , , , }i iG G G G   and 1,4 2,4 1,4 0,4{ , , , , }i iG G G G   

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1: shows the parallel computations of wj-NAF expansions on two lines. 
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Remark 12. To make the computation of wj-NAF expansions of the integers  

11 12 21, ,k k k and 22k  and later on computing the interleavings 11 12 1( )k P k P  

and 21 22 2 ( )k P k P  or 11 12 1 21 22 2( ) ( )k P k P k P k P     more clearly, it is 

possible to write 1 2 3, ,z z z  and 4z  rather than 11 12 21, ,k k k  and 22k respectively. 

 

4.3. The proposed Parallel Computation of wj-NAF Expansions in One 

Parallel Line 

On the other side, the parallel computations to find wj-NAF expansions can 

take another proposed model. This model is formed through another type of 

the parallel designs. It consists of one parallel line contains of four parallel 

sub-lines. On each parallel sub-line take place processing each value jz  for  

1,2,3,4j  that based on the generalization of the original wNAF idea which 

presented in the Definition (11). For instance, the first parallel sub-line takes 

1z  and 1w  as inputs and the processing performs to output the result of              

1w NAF 1( )z  expansion. For all others three parallel sub-lines, the processing 

occurs in the same way through computing same operations in each parallel 

sub line. All the computations carries out simultaneously to output results. 

So, such these computations save a lot of execution time. The parallel 

implementation results can be obtained by applying the following Algorithm 

(2). Figure (2) illustrates the parallel computation of wj-NAF expansions on 

one parallel line.  

 
4.4. Parallel Computation of the Width- wj-NAFs Positive Integers in 

One Parallel Line 

Next is the algorithm of parallel computation of the width- wj-NAFs with 

positive integers in one line. 

 

Algorithm 2: 

Input: Window width ,jw positive integer , 1,2,3,4.jz j    

Output: The jw NAF expansions of  positive integer .jz   

Computation: 

1.  0i   

2.  While ( 1, 1,2,3,4)jz j   do 

3. If ( jz is odd ) then  

4. , ,mod 2 ,jw

i j j j j i jG z z z G    

5.    Else 
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6.   , 0i jG   

7.  Endif 

8.  2, 1.j jz z i i    

9. Endwhile 

10.  Return: On one line: from parallel sub-line1: 1,4 2,4 1,4 0,4{ , , , , },i iG G G G      

parallel sub-line 2: 1,2 2,2 1,2 0,2{ , , , , },i iG G G G        

  parallel sub-line 3: 1,3 2,3 1,31 0,3{ , , , , },i iG G G G    

  parallel sub-line 4: 1,4 2,4 1,4 0,4{ , , , , }i iG G G G   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2: shows the parallel computations of wj-NAF expansions on one line. 
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4.5. Parallel Computing For Efficiently Computable Endomorphisms 

Recall the definition of endomorphism (4) and how to compute it though 

Definition (5) and Lemma (6). Such endomorphism has been computed as a 

multiplication by   where [1, 1].n   For 1 2, [1, 1],n    it is possible 

using Lemma (6) to compute two endomorphisms 1  and 2  such that

1 1( )P P   and 2 2( ) ,P P   where 1 2    and P  is a point lies on E 

over prime field .pF  Since the computation of endomorphisms form as 

multiplication by  's  then, it is easy to use any algorithm that computes the 

doubling 1P  and 2 .P  The parallel computation of these doublings is more 

efficient, because it saves (min ( 1 2,  ) 1 ) 2I  (min( 1 2,  ) 1 )

1 2(min( , )-1)M   S from the executing time in comparison with the time 

that needs for computing two endomorphisms separately, where I, M and S 

are field operations, inversion, multiplication and squaring respectively. 
 

5. THE PROPOSED INTERLEAVING METHODS TO 

COMPUTE ISD ELLIPTIC SCALAR MULTIPLICATION 

  In this section, we proposed two interleaving methods to compute 

ISD elliptic scalar multiplication .kP   

 

5.1.  The Interleaving Method to Compute k11P+k12ψ1(P) and 

k21P+k22ψ2(P) 

Let 
2 3:E y x ax b    be an elliptic curve defined over a prime field .pF  

And let P be a point on E which has prime order n. The curve E has two 

efficiently computable endomorphisms 1P  and 2 P  that computed as 

shown in Definition (5) and Lemma (6). The computation of  11 12 1( )k P k P  

and 21 22 2 ( )k P k P can be carried out through the applying of the conception 

of interleaving method. But, it is not reasonable to compute these 

interleavings one by one because this procedure needs further of the 

executing time. So, it requires to propose new model based on the concept of 

the parallel computation of these interleavings 11 12 1( )k P k P and  

21 22 2 ( )k P k P  simultaneously.  

 

The basic idea of this model depends on the parallel implementation of the 

generalized wj-NAF expansions that proposed and implemented by Algorithm 

(1). This model consists of two parallel lines, each parallel line contains on 

two parallel sub-lines. On these parallel sub-lines take place the processing of 
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wj-NAF expansions to represent four sub-scalars 11 12 21, ,k k k  and 22k  on the 

same time.  

 

The parallel computation in two lines of interleavings is performed in two 

stages. The pre-computation stage and evaluation stage. The pre-computation 

stage implements to compute the points jiP  for 
1

{1,3, ,2 1}jw
i


   for 

1,2,3,4.j   There are two cases of computing jiP when  1,3.j   Since 

P1=P3=P, so when w1= w3 then the computation of iP1 and iP3 carries out for 

one of them. Whereas, if w1 ≠ w3 the computation performs also for one of 

them that has maximum value between w1 and w3. In evaluation stage takes 

place the computing of jw NAF for 1,2j   on the first parallel line and the 

computing of jw NAF for 3,4j   on the second parallel line. Furthermore, 

on each parallel line, the applying of the interleaving method can be 

performed. Figure (3) shows the parallel computations of wj-NAF expansions 

in two lines. The implementation of the proposed model is given by 

Algorithm (3).  

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3: shows the parallel computation of two interleavings k11P+k12ψ1(P) and k21P+k22ψ2(P). 

 



Integer Sub-Decomposition Elliptic Scalar Multiplication 

 

 Malaysian Journal of Mathematical Sciences 129 

 

5.2. Algorithm 3 of the interleaving method based on wj-NAF  

expansions in two parallel lines. 

Input: Integers ,jz  widths jw  and points jP  for 1,2,3,4.j   

Output:  An interleavings points 
1,2

j j

j

z P


  and 
3,4

.j j

j

z P


  

1. Precomputation stage:  

2. Compute jiP  for 
1

{1,3,...,2 1}jw
i


   where  1,2,3,4.j   

3. Computation of the endomorphisms 1( )P  and 2 ( ).P  

4. Parallel computation stage:  

5. First parallel line: 

6. Set 1 2 1, ( ).P P P P    

7. Run parallel computations width wj-NAF  of positive integers Algorithm 

(1) to compute     
1

,

1

2
j

j

l

i

w j i j

i

NAF z G





  for  j  from 1 to 2 do. 

8. Set max{ , 1,2}.jl l j   

9. Define , 0i jG   for i  from jl  to l-1, and for j from 1 to 2 do. 

10. If ( 0)jz   then, 

11. Set , , , 0 : , 1,2.i j i jG G i l j    

12. Else , , , 0 : , 1,2.i j i jG G i l j    

13. Endif 

14. .Q   

15. For  i  from l-1 down to 0 do 

16. 2 .Q Q  

17. For  j from 1 to 2 do. 

18. If ,( 0)i jG   then, 

19. If ,( 0)i jG   then,  

20. ,i j jQ Q G P   

21. Else ,i j jQ Q G P   

22. Endif    

23. Else .Q Q  

24. Endif 

25. Endfor 

26. Second parallel line: 

27. Set 3 4 2, ( ).P P P P   
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28. Run parallel computations width-w NAF of positive integers algorithm 

(2) to compute  
1

,

1

2
j

j

l

i

w j i j

i

NAF z G





 for  j from 3 to 4 do. 

29. Set max{ , 3,4}.jl l j    

30. Define , 0)i jG   for i  from lj to l'-1, and for j from 3 to 4 do. 

31. If  ( 0)jz   then,  

32. Set , , , 0 : , 3,4.i j i jG G i l j     

33. Else , , , 0 : , 3,4.i j i jG G i l j    

34. Endif 

35. .Q   

36. For  i from l'-1 down to 0 do. 

37. 2 .Q Q  

38. For  j from 3 to 4 do. 

39. If ,( 0)i jG   then, 

40. If ,( 0)i jG   then, 

41. , .i j jQ Q G P   

42. Else 

43. , .i j jQ Q G P   

44. Endif    

45. Else 

46. .Q Q  

47. Endif 

48. Endfor  

49. Endfor 

50. Return .Q  

 

5.3. Interleaving  Method to Compute k11P+k12ψ1(P)+ k21P+k22ψ2(P) 

For speeding up computation of elliptic scalar multiplication kP , another 

model of the interleaving method which consists of four sub-scalar 

multiplications can be used. The idea is to modify the computation proposed 

that has been accomplished on two parallel lines to compute interleavings 

11 12 1( )k P k P and 21 22 2 ( )k P k P  into calculation of the interleaving that 

defined in equation (4) on one line that comprises of four parallel sub-lines. 

For each term in equation (4), the interleaving permits to use different 

methods. For instance, using width wj-NAF with various window widths or 
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other methods. The doubling at each term can be carried out simultaneously. 

So the cost of the doubling is given by the maximum number of doublings 

required to compute equation (4).  

 

Computation of the interleaving that was defined in equation (4), the 

processing takes place firstly for all four parallel sub-lines simultaneously to 

determine the wj-NAF  expansions for integers k11, k12, k21, k22 through wj with  

j=1,2,3,4. Follows these the determinations, the computation of interleaving 

that also based on the saved points 
j

iP  for odd 
1

2 ,jw
i


  j=1,2,3,4 which are 

obtained from the pre-computation stage. Since P1=P3=P, in the pre-

computation stage, then sets of the points 1iP   and 3iP  are equal when 

1 3 ,w w  so the pre-computation does for one of them. On the other hand, it is 

possible determining the maximum number between w1 and w3, max( ),jw  j 

=1,3, so the pre-computation is performed for 
max( ) 1

2 ,jw
i


  j=1,3.  

 

Figure (4) shows the parallel computation of one interleaving 

11 12 1 21 22 2( ) ( ).k P k P k P k P     Algorithm (4) can be used to compute the 

interleaving that is defined in equation (4). On this algorithm, the 

computation of the steps (15-28) carries out from the left to the right and at 

each phase, there is one doubling operation 2Q of the accumulator.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4: shows the parallel computation of one interleaving k11P+k12ψ1(P)+ 

k21P+k22ψ2(P). 
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5.4. Algorithm 4 of the interleaving method based on wj-NAF  

expansions  in one parallel lines. Part 1 ( Pre-computation stage) 
 

Input: Integers ,jz  widths jw  and points ,jP 1,2,3,4.j   

Output:  The interleaving point 
1:2

.j j

j

z P


  

1. Set 1 3 .P P P    

2. If ( 2,4)j  then 

3. For 
1

1,3,5: 2 1jw
i


   then 

4. Compute 
j

iP  

5. Endfor 

6. Endif 

7. If ( 1,3)j   then 

8. If (w1=w3) then 

9. For
1

1,3,5 : 2 1jw
i


   then 

10. Compute iP1. 

11. Endfor 

12. Else (w1 ≠ w3) 

13. For 
max( ) 1

1,3: 2 1jw
i


   then  

14. Compute 
j

iP . 

15. Endfor 

16. Endif 

17. Return 
j

iP . 

18. Computation of the  endomorphism 1( )P and 2 ( ).P   

 

5.5. Algorithm 4 of the interleaving method based on wj-NAF  

expansions  in one parallel line. Part 2 ( Parallel computation stage) 

1. Set P1 = P3 = P, P2 = ψ1(P)  and P4 = ψ2(P).  

2. Run parallel computations width-w NAF of positive integers Algorithm 

(2) to compute  
1

,

1

2
j

j

l

i

w j i j

i

NAF z G





  for  j from 1 to 4 do. 

3. Set max{ , 1,2,3,4}.jl l j    

4. Define , 0i jG  for i from lj to l-1 and for j from 1 to 4 do. 

5. For i from 0 to l do. 

6. For  j from 1 to 4 do. 

7. If  ( 0)jz  then, 
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8. Set , , .i j i jG G  

9. Else  

10. Set , , .i j i jG G   

11. Endif 

12. Endfor 

13. Endfor 

14. .Q   

15. For i from l-1 down to 0 do. 

16. 2 .Q Q  

17. For  j from 1 to 4 do. 

18. If ,( 0)i jG   then 

19. If ,( 0)i jG   then 

20. , .i j jQ Q G P   

21. Else 

22. , .i j jQ Q G P   

23. Endif      

24. Else 

25. .Q Q  

26. Endif 

27. Endfor 

28. Endfor 

29. Return Q. 

 

6. INTERLEAVING METHOD TO COMPUTE PROPOSED ISD 

SCALAR MULTIPLICATION BASED ON Wj-NAF 

EXPANSIONS  

The idea of GLV method Gallant et al., 2001, is the main source on 

which the ISD method depends to obtain a faster scalar multiplication on an 

ordinary elliptic curve E defined in equation (7). 

 

    This method primarily aims to sub-decompose the values k1 and k2 

when one or both values are not bounded by  √n. The sub-decomposition 

from equation (1) is expressed by these formulas that defined in equation (2). 

            

  To accomplish sub-decomposition, one should first find a GLV 

generator {v1,v2} by using a GLV generator algorithm in
 
Kim and Lim, 2003, 

for a given n and λ, where n is a large prime order of elliptic curve point P 
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and λ is a root of the characteristic polynomial of endomorphism ψ of E. 

Consequently, k ∈ [1, n-1] is decomposed into k1 and k2. This decomposition 

can be performed using the balanced length-two representation of a multiplier 

k algorithm in Hankerson et al., 2004. Our modified algorithm can then be 

used to generate the ISD generators {v3,v4} and {v5,v6} such that each 

component of v3,v4,v5 and v6 is bounded by √n and relatively prime to each 

other. These generators can be easily computed by solving the closest vector 

problem in a lattice that is involved in using an extended Euclidean algorithm 

in Gallant et al., 2001; Hankerson et al., 2004, k1 and k2 can be decomposed 

again into integers k11 k12, k21 and k22 which means that the sub-

decomposition of k as follows: 

 

 11 12 1 21 22 2 (mod )k k k k k n                           (13) 

 

with -√n < k11, k12, k21, k22 <√n from any ISD generators {v3,v4} and {v5,v6}. 

Finally, the scalar multiplication kP can be computed by formula (4). 

 

The formula of ISD elliptic scalar multiplication kP defined in 

equation (4)  can be carried out through the applying of two proposed models 

to compute the interleaving based on wNAF expansions. The processing, on 

the first model that consists from two parallel lines, each line contains on two 

parallel sub-lines, needs computing k11P+k12ψ1(P) and k21P+k22ψ2(P) 

separately in two parallel lines but in the same time. The final result of kP 

comes through the sum of two elliptic points resulting from the computing 

k11P+k12ψ1(P) and k21P+k22ψ2(P). Whereas, the second proposed interleaving 

model to compute kP consists of one parallel line contains on four parallel 

sub-lines. The processing takes place to compute one interleaving 

k11P+k12ψ1(P) + k21P+k22ψ2(P) to find the final result of kP . The computation 

with this model is more efficient in comparison with the first one because it 

gives more speeding up in computation. The ISD elliptic scalar multiplication 

kP can be computed by using Algorithm (5).  
 

6.1. Algorithm 5 of ISD Elliptic Scalar Multiplication 

Input: The integers , , , , , 1,2,3,4.jp n P w j    

Output:  kP. 

1. Precomputation stage:  

2. Compute two endomorphisms  ψ1(P)= λ1P and ψ2(P)= λ2P. 

3. Computation stage:   
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4. Run GLV generator Algorithm (1) of  Kim and Lim, 2003, to find the 

generator 1 2{ , }v v  such that  1 1 1( , )m mv r t    and  1 ( , )m mv r t   or 

1 2 2( , ).m mv r t    

5. Run balanced length-two   representation of a multiplier Algorithm 

(3.74) of Hankerson et al., 2004, to decompose k into k1 and k2. 

6. Choose randomly λ1, λ2 ∈ [1, n-1] such that λ1 ≠ ± λ2. 

7. Run ISD generators Algorithm (1)  of  Ajeena and Kamarulhaili, 2014a; 

2014b,to find 3 4{ , }v v and 5 6{ , }v v such that 

1 1 1 13 1 1 4 2 2( , ), ( , )m m m mv r t v r t        or 
1 1

( , ),m mr t  

2 25 1 1( , )m mv r t    and 
2 26 2 2( , )m mv r t    or 

2 2
( , ).m mr t  

 

8. Use Algorithm (2) of Ajeena and Kamarulhaili, 2014, to sub-decompose 

1k and 2k  into 1 11 12 1(mod )k k k n   and 2 21 22 2 (mod )k k k n   such 

that 11 12 1 21 22 2 (mod )k k k k k n     .  

9. Set P1=P3=P, P2= ψ1(P) and P4= ψ2(P).  

10. Use parallel computing wj-NAF  Algorithm (1) or (2) to compute wjNAF 

expansions for j=1,2,3,4 of integers k11, k12, k21 and k22. 

11. Use interleaving Algorithm  (3) or (4) to compute kP= k11P+ k12 ψ1(P) + 

k21P+ k22 ψ2(P).      

12. Return kP.  

 

7. CONCLUSION 

Computing the ISD elliptic scalar multiplication kP requires 

computation of the terms k11P, k12ψ1(P), k21P and k22ψ2(P).  This computation 

comprises several parts and terms. To compute those terms and parts 

individually needs more execution time. Thus, it is wise to find ways to 

compute these terms simultaneously to reduce computation times.  In this 

work, we proposed two new algorithms to compute these terms jointly 

through the concept of parallel computations. For the first proposed model, 

the parallel computation of two interleavings k11P+k12ψ1(P) and 

k21P+k22ψ2(P) can be carried out  on two parallel lines. The implementation 

on this model firstly takes place on the proposed parallel computation of wj-

NAF  expansions that also consists of two parallel lines. Each parallel line 

contains two parallel sub-lines. Each parallel sub-line performs the 

computations of wjNAF expansion for j=1,2,3,4. Thereafter, the computation 

of interleavings k11P+k12ψ1(P) and k21P+k22ψ2(P) are determined by two 

parallel lines. The sum of the final results from the interleavings that were 

represented as two elliptic points, give the final result of kP. 
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However, it is also possible to use another model to compute the 

terms in ISD elliptic scalar multiplication kP simultaneously. This model uses 

the parallel computation to compute the interleaving k11P+k12ψ1(P) + 

k21P+k22ψ2(P) on one parallel line. The performance was based on the 

computation of the generalized wj-NAF  expansions in one parallel line. This 

line consists of four parallel sub-lines that on them are determined the wj-

NAF expansions. The processing on the one parallel line model that consists 

of four parallel sub-lines is more efficient because it implements with less 

executing time. It provides four times the time used for the implementation. 

The cost of doubling here determines on the basic the maximum number 

among k11, k12, k21 and k22 in comparison with the computation that performed 

of the terms k11P, k12ψ1(P), k21P and k22ψ2 (P) individually. 
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